
Host-based races of phytophagous insects
have become commonly reported in the ento-
mological literature, evidence coming from
allozyme (Berlocher 1999), DNA sequence
(Brown et al. 1996), morphological (Carson et al.
1982, Pappers and Ouborg 2002), and ecologi-
cal (Eubanks et al. 2003) data. Aphids (Hem-
iptera: Aphididae), all species of which are
plant phloem feeders, also form host-adapted
races (Via 1999, Shufran et al. 2000). Aphid
species can exhibit morphological differentia-
tion along host plant lines (Blackman 1981),
and indeed, the morphological divergence can
be high enough to prompt taxonomists to
name new species (Blackman 1987).

We wished to see if morphological adapta-
tion to closely related host plants was evident
in Cinara (Aphididae: Lachninae), a group of
aphids that feed exclusively on conifers in the
Cupressaceae and Pinaceae (Eastop 1972) and
that can be of economic importance (Kfir et al.
1985, Watson et al. 1999, Penteado et al. 2000).
Although pinyon pines are occasional economic
resources (Lanner 1981), the Cinara that feed
on the principal pinyon species in the U.S.,
Pinus edulis Engelm. and P. monophylla Torr.
& Frem., very rarely have any economic impact
(see Palmer 1926 for the only known record of
injurious pinyon Cinara) and are not subject to
the high selective pressures common to aphids

in agricultural systems. Pinyons are small- to
medium-sized pines whose ranges extend over
the mountainous terrain of Mexico and the
southwestern U.S. Pinus edulis grows at eleva-
tions between 1600 m and 2300 m in Arizona,
Utah, New Mexico, Colorado, southwestern
Texas, far western Oklahoma, and in an iso-
lated population in southern California. Pinus
monophylla grows at elevations between 1300
m and 2200 m in southern and eastern Califor-
nia, Nevada, southwestern Utah, and western
Arizona. These 2 species of pinyon (and hence
their concomitant Cinara) are largely allopatric,
with a few parapatric areas that also contain
hybrids (Trombulak and Cody 1980, Gafney
and Lanner 1987). Because of their limited
elevational range, pinyon distribution is scat-
tered and island-like, especially in the Great
Basin (Critchfield and Little 1966). Pinyons can
form monocultural woodlands but are more
often found in large stands of pinyon-juniper
woodlands, oak-pinyon scrub, or mixed stands
of other pines, usually P. ponderosa Dougl.

Fourteen species of Cinara are recorded
from P. edulis, and a subset of 4 from P. mono-
phylla (Voegtlin and Bridges 1988). Favret and
Voegtlin (2004) have shown enough genetic
divergence between C. wahtolca Hottes feed-
ing on P. edulis and P. monophylla to posit the
possibility of separate, host-affiliated species.
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HOST-BASED MORPHOMETRIC DIFFERENTIATION IN THREE 
CINARA SPECIES (INSECTA: HEMIPTERA: APHIDIDAE) 

FEEDING ON PINUS EDULIS AND P. MONOPHYLLA

Colin Favret1 and David J. Voegtlin1

ABSTRACT.—Cinara edulis (Wilson), C. terminalis (Gillette and Palmer), and C. wahtolca Hottes were all larger when
feeding on Pinus monophylla Torr. & Frem. than when feeding on P. edulis Engelm. Almost all nonsetal morphometric
characters were longer in aphids on the former of these pinyon pines. Although mouthpart characters also followed this
pattern of size in C. edulis and C. wahtolca, rostrum length showed the opposite pattern in C. terminalis and was shorter
when on P. monophylla. This reversal in size pattern suggests that mouthpart size can be independent of overall aphid
size. Principal components analyses corroborate the univariate statistics and we discuss the contribution of various char-
acters to the principal components. We compare environmental induction and environmental selection as explanations
for the observed size differences and discuss the taxonomic implications of our results.
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Here we sought supporting evidence of speci-
ation by examining morphological divergence
between populations of C. wahtolca on the 2
hosts.

Two other species of pinyon-feeding Cinara
were collected in large numbers. Cinara edulis
(Wilson) and C. terminalis (Gillette and Palmer),
like C. wahtolca, were collected across the full
range of the pinyons. Even if C. wahtolca rep-
resented only a single species, host-based
morphological differences may be present if
induced environmentally. We therefore ana-
lyzed the other 2 Cinara species to see if they
might follow the same host-based trend as C.
wahtolca.

The Rostrum of Cinara

The morphology of the rostrum is widely
used in aphid taxonomy. The length of the
whole rostrum and some of its segments, the
shape and number of accessory setae on the
4th rostral segment, and the shape of the 4th
and 5th segments combined are used in many
identification keys (Richards 1972, Corpuz-
Raros and Cook 1974, Eastop 1979, 1987, Cook
1984). Furthermore, the structure of the feed-
ing apparatus is often correlated with host plant.
For instance, many grass-feeding aphids have
short, blunt rostra, whereas aphids that feed
on the bark of woody hosts have long rostra
(Heie 1980). Cinara fall into the latter cate-
gory, and their long, lance-shaped rostrum is a
synapomorphy for the genus (Heie 1988).

The rostrum of Cinara is composed of 5
segments. The first 2 are longer and unpig-
mented, the next 2 are shorter and sclerotized,
and the terminal segment is usually consider-
ably reduced (Fig. 1). The number of setae on
the 4th segment is conserved within a species

and is taxonomically informative (Eastop 1972,
Pepper and Tissot 1973). Overall length of the
rostrum in Cinara is also taxonomically infor-
mative (Voegtlin 1976) and is correlated with
the part of the woody host the aphid feeds on:
the thicker the bark, the longer the rostrum.
In other words, root- and trunk-feeding aphids
have longer rostra than branch-feeding aphids,
which in turn have longer rostra than shoot-
feeding aphids (Bradley 1961). This correlation
is not without exceptions, and some species
are occasionally found at atypical feeding sites.
For instance, we have found C. ponderosae
(Williams), normally a shoot feeder, on roots,
and C. puerca Hottes, normally a root feeder,
on shoots.

As there is a close affinity between rostrum
morphology and host identity, we predicted that
any morphological differences between Cinara
species feeding on P. edulis and P. monophylla
would be most pronounced in the rostrum.
We predicted that host-based differences in
the morphology of the rostrum would be rela-
tively independent of any host-based differ-
ences in the morphology of other parts of the
aphid. To test this hypothesis, we compared
the rostrum of aphids from the 2 pinyon host
species. We also performed principal compo-
nents analyses with a suite of other morpho-
logical characters.

MATERIALS AND METHODS

Collections and 
Measurements

Collections of 123 colonies of viviparous
(live-bearing) C. edulis, C. terminalis, and C.
wahtolca were made on P. edulis and P. mono-
phylla across the hosts’ full ranges during the
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Fig. 1. Rostrum of C. edulis.



summers of 1997–2001. To ensure that we were
comparing appropriate specimens, we did not
analyze material from pinyon hybrids. Material
was collected by visual searching and by beat-
ing sheet. Specimens were placed into 70%
ethanol and later cleared and mounted to slides
in Canada balsam. Identifications were made
with Hottes’s (1960) and Blackman and Eastop’s
(1994) keys and with reference to the types.
All specimens were deposited in the Illinois
Natural History Survey insect collection.

We analyzed approximately 3 aphids from
each collected colony. A total of 80 viviparous
alatae (winged aphids) and 134 viviparous
apterae (wingless aphids) of C. edulis were
collected and measured. Fifty-seven and 92
viviparous apterae of C. terminalis and C. wah-
tolca, respectively, were collected and mea-
sured. Insufficient numbers of alatae of these
2 latter species were collected, so they were
omitted from the analyses. Characters that
were obscured or otherwise difficult to mea-
sure were omitted on some individuals; there-
fore the actual sample sizes vary for each char-
acter (Table 1).

Characters

We examined the aphids’ rostra to determine
if their morphology was correlated with host
identity. The 2nd rostral segment in Cinara
telescopes into the 1st (Hottes 1954), making
it difficult to obtain a precise measure of over-
all length. The sclerotized portion of the stylet
groove has provided a useful proxy for ros-
trum length (Bradley 1961, Foottit and Mack-
auer 1990). Measurements of this feature, here-
after referred to as Bradley’s measure, were
made using an ocular micrometer on a com-
pound microscope. Rostra that were bent
beyond ~30° or whose basal portion was
obscured by the aphid’s body or head were
omitted.

We counted accessory setae on the 4th ros-
tral segment, which include all setae on the
segment except the 6 on the distal end. Mea-
surements of the lengths of the 3rd and 4th
rostral segments were made with a camera
lucida and Zidas digitizing pad. It is difficult
to obtain consistently accurate measurements
of the diminutive 5th segment, so it was not
included in the analyses.

In addition to the rostral characters, a suite
of other characters was chosen based on suc-
cessful use in previous studies (Bradley 1961,

Eastop 1972, Foottit and Mackauer 1990, Foot-
tit 1992), ease of measurement, and low level
of distortion under the pressure of a cover slip
(Foottit 1992). Some standard characters such
as counts of setae on the genital plate or
siphuncular cones were omitted because they
were hard to examine accurately in a large
enough sample of specimens, or because pre-
liminary analysis indicted that they were largely
uninformative. Measurements were made with
a camera lucida and digitizing pad, including
the overall body length; lengths of the 3rd,
4th, and 5th antennal segments; lengths of the
femur, tibia, and ventral aspects of the 2 tarsal
segments; and lengths of the longest seta on
the midpoint of the 3rd antennal segment,
dorsal side of the hind tibia, and 5th abdomi-
nal tergum. We counted the number of setae
on the basal portion of the 6th antennal seg-
ment and the 8th abdominal tergite.

Analysis of Variance and 
Principal Components Analysis

We performed analyses of variance (ANOVA)
for all 4 rostral characters, and for the ratio of
Bradley’s measure to body length and the ratio
of 3rd and 4th rostral segments. Ratios were
used to control for correlation between length
of the rostral segment and overall size of the
aphid. Analyses of variance compared charac-
ters of apterae of all 3 species and alatae of C.
edulis feeding on P. edulis and P. monophylla.

To determine if nonrostral characters were
subject to the same level of host-affiliated spe-
cialization as the rostrum, we performed uni-
variate statistical analyses, ANOVAs, on them
and on several ratios as well. The 3 ratios were
composed of closely related characters, such
that they likely would be subject to similar selec-
tive pressure and correlated response (Price
and Langen 1992). Ratios were of the 2 meta-
tarsal segments, the metafemur and the meta-
tibia, and the 4th and 5th antennal segments.

We also performed multivariate analyses, in
the form of principal components analysis (PCA;
Seal 1968, Pimentel 1979, Jackson 1991), using
all characters except the composite characters
(ratios) and Bradley’s measure, which was omit-
ted to increase sample size. In PCA the corre-
lation between all characters is assessed in a
correlation matrix, and the contribution of each
measure to overall morphometry (shape and
size) of the individual aphid is summarized.
PCA not only compares the contribution of
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various measures to the principal components,
but it also compares individual aphids with
each other along each of the principal compo-
nent axes. In this way morphometrically dis-
tinct groups can be recognized (Jeffers 1967,
Pimentel 1979). SYSTAT 10 software (SPSS,
Inc., Chicago, IL) was used to perform the
PCA. We used Quartimax rotation, a standard
means of rotating the data points in n-dimen-
sional space to optimize their explanatory
power, keeping those principal components
that explained 1% or more of the morphomet-
ric variation. Lastly, we plotted PCA scores for
individual aphids on 2-dimensional graphs
and performed ANOVAs with the principal
components to compare host-affiliated groups
statistically (Pimentel 1979).

RESULTS

Univariate Analyses of Variance

Differences in univariate rostral morphology
were found across all 4 samples (C. edulis alatae
and apterae of all 3 species) and for all 6 char-
acters and ratios (first 6 lines of Table 1). All 3
length measures were greater for P. mono-
phylla–feeding C. edulis alatae than they were
for those aphids on P. edulis. The same pattern
was found for C. wahtolca apterae as well as
for rostral segments 3 and 4 in C. edulis apterae.
The rostral measurements for C. terminalis
apterae showed the reverse distinction, how-
ever, and all 3 characters were shorter for P.
monophylla–feeding aphids than they were for
those aphids feeding on P. edulis. Both alatae
and apterae of C. edulis had more setae on
their 4th rostral segment if they fed on P. edulis,
but C. wahtolca had more setae when feeding
on P. monophylla. The ratio of Bradley’s mea-
sure to body length was different for all sam-
ples except C. wahtolca apterae, and the ratio
of rostral segments 3 and 4 was different for C.
terminalis and C. wahtolca apterae (Table 1).

Differences in nonrostral characters were
also evident (lines 7 to 21 of Table 1). Where
differences were seen, in all 4 samples, mea-
surements of nonsetal body parts were longer
on P. monophylla than on P. edulis. The meta-
tibia, 3rd and 5th antennal segments, and 2nd
metatarsal segment were longer in all 4 sets of
P. monophylla–feeding aphids. All 3 setal mea-
surements were longer in P. monophylla–feed-
ing C. wahtolca than in those feeding on P.
edulis, but of the other 9 combinations (3 setal

measurements for C. edulis alatae, C. edulis
apterae, and C. terminalis), a difference was
seen in only 1: C. edulis had longer dorsal
abdominal setae when feeding on P. edulis. Of
the setal counts the only observed differences
were more setae on the 8th abdominal tergum
in P. edulis–feeding C. edulis alatae than in
those feeding on P. monophylla, and the re-
verse scenario for C. wahtolca apterae. No dif-
ferences were observed in the count of setae
on the base of the 6th antennal segment or for
the ratio of metatibia to metafemur. Differences
were observed in the ratio of 4th to 5th anten-
nal segments in all samples except C. termi-
nalis, and in the ratio of 2nd to first metatarsal
segments for C. terminalis and C. wahtolca
(Table 1).

Principal Components Analyses 
and Multivariate ANOVAs

The average 1st principal component score
for individual aphids was different for all 4 sets
of aphids, as determined by ANOVA; means of
the 1st component score for individual aphids
were negative for those feeding on C. edulis
and positive for those feeding on P. mono-
phylla (Table 2). There was no significant dif-
ference in the means of the 2nd, 4th, or 5th
principal component scores between P. edulis–
and P. monophylla–feeding Cinara. Differences
in the 3rd principal component were seen in
C. edulis and C. terminalis apterae (Table 2).
Figure 2 plots these 2 groups of aphids on axes
representing the 1st and 3rd components.

The direction and magnitude of the contri-
bution of each character to PCA showed a pro-
nounced role for the antennal and tarsal seg-
ments, tibia, and body length in the 1st princi-
pal component (Fig. 3). The rostral segments
contributed to the 1st principal component in
C. edulis alatae and C. edulis and C. wahtolca
apterae, but negatively to the 3rd principal
component in C. terminalis apterae. Likewise,
the femur contributed greatly to the 1st prin-
cipal component in the apterae of all 3 species,
but the femur and the tibia contributed more
to the 3rd principal component in the C. edulis
alatae, the tibia being in a negative direction.
The lengths of setae tended to contribute posi-
tively to the 2nd principal component, although
the length of the setae on tergum 5 in C. edulis
apterae contributed most to the 3rd component.

Setal counts in both morphs of C. edulis
contributed negatively to the 1st component
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TABLE 1. Morphological measurements (mm). Sample size, mean, range, and level of significance in ANOVA: * = P <
0.05; ** = P < 0.01; *** = P < 0.001.

Species and morph C. edulis alatae_______________________________________________________________
Host plant P. edulis P. monophylla__________________________ __________________________
Measurements N Mean Range N Mean Range Sig.

Bradley’s measure 26 1.82 1.66–2.08 26 1.90 1.73–2.03 **
Bradley’s measure / Body 25 0.541 0.430–0.880 25 0.497 0.412–0.675 *
Rostrum 3 41 0.232 0.195–0.262 39 0.241 0.222–0.263 **
Rostrum 4 41 0.188 0.160–0.213 39 0.196 0.177–0.214 ***
Rostrum 3 / Rostrum 4 38 1.24 1.13–1.39 38 1.23 1.11–1.37
Count of setae on rostrum 4 41 16.0 12–22 38 14.2 11–16 ***
Length of seta on antennal segment 3 39 0.048 0.027–0.062 39 0.047 0.027–0.076
Length of seta on hind tibia 41 0.065 0.028–0.101 39 0.059 0.036–0.083
Length of seta on 5th abdominal 

tergum 36 0.035 0.008–0.063 36 0.028 0.008–0.063
Hind tibia 40 2.59 1.78–3.08 39 3.06 2.48–3.48 ***
Hind femur 41 1.55 1.20–3.20 39 1.62 1.34–1.87
Tibia / Femur 40 1.78 1.68–2.02 39 1.89 1.68–2.03
3rd antennal segment 39 0.480 0.395–0.559 39 0.534 0.447–0.549 ***
4th antennal segment 39 0.231 0.170–0.291 39 0.267 0.222–0.333 ***
5th antennal segment 39 0.260 0.215–0.313 39 0.297 0.219–.0315 ***
Antennal segment 4 / segment 5 39 0.887 0.705–1.02 39 0.901 0.746–1.15
1st tarsal segment 40 0.121 0.100–0.134 39 0.128 0.095–0.142 ***
2nd tarsal segment 40 0.263 0.228–0.301 37 0.283 0.261–0.312 ***
Tarsal segment 2 / segment 1 40 2.19 2.01–2.46 37 2.21 1.99–2.70
Count of setae on base of antennal 

segment 6 38 11.3 8–16 36 10.8 6–14
Count of setae on 8th abdominal 

tergum 40 14.0 10–19 37 12.4 10–16 ***

Species and morph C. edulis apterae_______________________________________________________________
Host plant P. edulis P. monophylla__________________________ __________________________
Measurements N Mean Range N Mean Range Sig.

Bradley’s measure 48 1.82 1.53–2.14 46 1.87 1.58–2.19
Bradley’s measure / Body 48 0.555 0.444–0.736 46 0.497 0.393–0.608 ***
Rostrum 3 59 0.238 0.203–0.275 73 0.243 0.206–0.277 *
Rostrum 4 61 0.195 0.168–0.219 73 0.201 0.174–0.232 **
Rostrum 3 / Rostrum 4 59 1.22 1.08–1.44 73 1.21 1.06–1.38
Count of setae on rostrum 4 60 15.5 11–20 73 14.8 12–19 *
Length of seta on antennal segment 3 60 0.049 0.022–0.078 73 0.052 0.033–0.077
Length of seta on hind tibia 59 0.060 0.023–0.092 67 0.062 0.030–0.089
Length of seta on 5th abdominal 

tergum 58 0.023 0.007–0.053 71 0.013 0.007–0.055 ***
Hind tibia 59 2.56 1.98–3.11 66 2.84 2.11–3.65 ***
Hind femur 59 1.42 1.09–2.60 69 1.56 1.24–1.85 ***
Tibia / Femur 60 1.84 1.60–2.02 66 1.81 1.61–1.99
3rd antennal segment 60 0.467 0.305–0.610 73 0.516 0.385–0.609 ***
4th antennal segment 59 0.214 0.138–0.280 73 0.248 0.171–0.331 ***
5th antennal segment 59 0.248 0.179–0.322 73 0.278 0.183–0.343 ***
Antennal segment 4 / segment 5 59 0.860 0.690–1.06 73 0.898 0.726–1.07 **
1st tarsal segment 59 0.125 0.105–0.144 66 0.131 0.112–0.15 ***
2nd tarsal segment 59 0.261 0.224–0.310 66 0.277 0.222–0.321 ***
Tarsal segment 2 / segment 1 59 2.09 1.86–2.32 66 2.11 1.88–2.37
Count of setae on base of antennal 

segment 6 56 11.7 6–16 70 12.5 8–19
Count of setae on 8th abdominal 

tergum 60 13.5 10–20 72 13.2 10–19
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TABLE 1. Continued.

Species and morph C. terminalis apterae_______________________________________________________________
Host plant P. edulis P. monophylla__________________________ __________________________
Measurements N Mean Range N Mean Range Sig.

Bradley’s measure 16 1.36 1.23–1.50 20 1.28 1.10–1.40 **
Bradley’s measure / Body 16 0.509 0.431–0.587 20 0.441 0.386–0.561 ***
Rostrum 3 28 0.192 0.175–0.211 29 0.184 0.171–0.193 ***
Rostrum 4 28 0.184 0.160–0.208 28 0.165 0.142–0.178 ***
Rostrum 3 / Rostrum 4 28 1.05 0.933–1.16 28 1.12 1.02–1.26 ***
Count of setae on rostrum 4 27 6.19 5–8 27 6.11 5–7
Length of seta on antennal segment 3 25 0.053 0.027–0.090 27 0.055 0.032–0.083
Length of seta on hind tibia 26 0.085 0.040–.141 29 0.080 0.040–0.144
Length of seta on 5th abdominal 

tergum 28 0.055 0.013–0.094 29 0.064 0.033–0.112
Hind tibia 26 1.87 1.51–2.09 28 2.09 1.71–2.41 ***
Hind femur 26 1.11 0.93–1.22 29 1.23 .096–1.40 ***
Tibia / Femur 25 1.68 1.47–1.85 28 1.69 1.61–1.78
3rd antennal segment 25 0.422 0.295–0.473 27 0.452 0.367–0.507 *
4th antennal segment 25 0.163 0.121–0.209 27 0.187 0.130–0.222 ***
5th antennal segment 25 0.217 0.167–0.255 27 0.240 0.203–0.478 ***
Antennal segment 4 / segment 5 25 0.753 0.598–0.911 27 0.781 0.624–0.878
1st tarsal segment 26 0.123 0.098–0.140 28 0.126 0.102–0.143
2nd tarsal segment 26 0.267 0.204–0.313 28 0.285 0.246–0.308 ***
Tarsal segment 2 / segment 1 26 2.18 1.94–2.40 28 2.27 20.3–2.57 **
Count of setae on base of antennal 

segment 6 23 6.9 4–10 27 7.3 5–10
Count of setae on 8th abdominal 

tergum 27 12.4 10–18 28 12.9 10–18

Species and morph C. wahtolca apterae_______________________________________________________________
Host plant P. edulis P. monophylla__________________________ __________________________
Measurements N Mean Range N Mean Range Sig.

Bradley’s measure 13 1.43 1.36–1.60 41 1.57 1.37–1.82 ***
Bradley’s measure / Body 13 0.444 0.387–0.512 41 0.432 0.357–0.604
Rostrum 3 16 0.190 0.166–0.210 76 0.216 0.194–0.235 ***
Rostrum 4 16 0.153 0.138–0.163 76 0.167 0.147–0.187 ***
Rostrum 3 / Rostrum 4 16 1.24 1.10–1.36 75 1.30 1.17–1.48 **
Count of setae on rostrum 4 16 5.94 4–8 74 6.49 4–8 *
Length of seta on antennal segment 3 15 0.078 0.056–0.104 76 0.104 0.070–0.139 ***
Length of seta on hind tibia 16 0.096 0.072–0.112 72 0.120 0.076–0.152 ***
Length of seta on 5th abdominal 

tergum 16 0.075 0.010–0.141 76 0.122 0.010–0.179 **
Hind tibia 16 2.37 1.99–2.91 70 2.82 1.57–3.32 ***
Hind femur 16 1.41 1.15–1.70 72 1.69 1.27–2.01 ***
Tibia / Femur 16 1.69 1.61–1.74 70 1.67 1.60–1.82
3rd antennal segment 15 0.517 0.362–0.627 76 0.579 0.460–0.673 ***
4th antennal segment 15 0.223 0.194–0.285 75 0.230 0.181–0.285
5th antennal segment 15 0.275 0.173–0.346 74 0.328 0.259–0.394 ***
Antennal segment 4 / segment 5 15 0.821 0.705–1.16 74 0.701 0.575–0.836 ***
1st tarsal segment 16 0.129 0.115–0.141 70 0.139 0.107–0.154 ***
2nd tarsal segment 16 0.258 0.233–0.289 70 0.289 0.253–0.328 ***
Tarsal segment 2 / segment 1 16 2.00 1.83–2.14 70 2.09 1.83–2.59 **
Count of setae on base of antennal 

segment 6 13 8.6 5–12 69 8.5 5–11
Count of setae on 8th abdominal 

tergum 16 19.8 14–28 74 26.8 12–38 ***



and positively to the 2nd. Setal counts in C.
terminalis and C. wahtolca did not follow any
obvious pattern. In C. terminalis setal counts
of the 4th rostral and 6th antennal segments
contributed positively to the 4th principal
component, and counts of the 8th abdominal
tergum did not contribute appreciably to any
of the components. In C. wahtolca there were
negative and positive contributions to the 3rd
component by setal counts of the rostrum and
6th antennal segment, respectively, and posi-
tive contributions to the 1st and 2nd compo-
nents by the setal count of the 8th abdominal
tergum (Fig. 3).

DISCUSSION

Aphid Size As It Relates to Host

Most nonrostral and nonsetal length mea-
sures were greater for all 4 groups of Cinara
feeding on P. monophylla than for those feed-
ing on P. edulis (Table 1). One pitfall of the
univariate approach is the tendency to find
significant differences in almost all measure-
ments, as we have done here: Sokal (1962)
found that almost every character differed sig-
nificantly whether he compared gall-making
Pemphigus populitransversus Riley between
localities or between galls at the same locality.
Also Sokal et al. (1980) and Sokal and Riska
(1981) found as much morphometric variation
between nearby populations of P. populitrans-
versus and P. populicaulis Fitch as they did 

between more distant populations. Our sam-
ple sizes were not sufficiently large to enable
comparisons between or within colonies on
the same host species, and it is possible that
had we done so, many univariate differences
would have been found. However, we believe
that the concordance of almost every nonros-
tral, nonsetal character across all 3 Cinara
species is sufficient evidence to conclude that
aphids feeding on P. monophylla are larger
than those feeding on P. edulis.

Previous aphid PCA studies concluded that
size played a major role in the 1st principal
component (Wool 1977, Foottit and Mackauer
1990). The authors of one of the seminal works
on principal components analysis ( Jolicoeur
and Mosimann 1960) also claimed that the 1st
principal component is an indication of size if
all eigenvectors are about equal and share the
same sign. Despite this connection of the 1st
principal component to size, however, all prin-
cipal components are a combination of size
and shape effects (Somers 1989, Sundberg
1989). Making a distinction between size and
shape effects may even be hard to defend
(Bookstein 1989), and Sprent (1972) reasoned
that size and shape were largely inseparable,
allometry being by definition change in shape
concordant with change in size. For the pur-
poses of this study, however, the strong, posi-
tive contributions to the 1st principal compo-
nent by the 3 antennal segments, 4 leg seg-
ments, and body do corroborate the univariate
analyses (Fig. 3).
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TABLE 2. Principal components analysis. Sample size, percent of the total variance explained by the principal compo-
nent, and mean of the component score for the individuals (N) in the sample; * indicates P < 0.001 in ANOVA; lack of *
indicates P > 0.05.

1st component 2nd component 3rd component_________________ ________________ ________________
Aphid species Host species N % of Mean % of Mean % of Mean

variance variance variance

C. edulis alatae P. edulis 30 –0.567* 0.113 0.063
36.0 14.7 13.0

P. monophylla 28 0.608* –0.121 –0.068

C. edulis apterae P. edulis 48 –0.455* 0.051 0.405*
46.5 15.1 9.0

P. monophylla 62 0.352* –0.039 –0.314*

C. terminalis apterae P. edulis 19 –0.516* 0.144 –0.641*
42.5 16.0 10.0

P. monophylla 22 0.445* –0.124 0.553*

C. wahtolca apterae P. edulis 13 –1.287* –0.403 0.309
50.5 11.7 7.2

P. monophylla 63 0.266* 0.083 –0.064
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Fig. 2. 1st and 3rd principal components as calculated for individual aphids: (a) C. edulis and (b) C. terminalis apterae
on P. edulis (+) and P. monophylla (•).



Although the aphids studied are clearly
larger when feeding on P. monophylla, we can-
not determine whether this is a result of gene-
tically based selective pressure or environmental
induction (Thorpe 1976). Although methods
have been developed to test for the masking of
a genetic component to environment-pheno-
type correlation (Stinchcombe et al. 2002), our
materials and methods do not answer the ques-
tion of “nature versus nurture” with respect to
aphid size. However, Via and Shaw (1996) docu-
mented selection for an increase in body size
in Acyrthosiphon pisum (Harris) over the course
of a single growing season, showing that aphid
size can be genetically influenced and selected
for. Thus, there is no a priori reason to dis-
count selective pressure as the cause for the
larger body size of Cinara species feeding on
P. monophylla compared with those feeding on
P. edulis.

There are any number of environmental
factors that might cause P. monophylla to host

larger aphids, whether by selection or induc-
tion. A higher nutritive quality of the host or
weather-related phenomena may play a role:
Wool (1977) found larger aphids in cooler cli-
mates, perhaps a means to reduce heat loss; a
larger size would also result in a lower body
surface area to volume ratio, thereby reducing
the loss of water in drier environments.

Rostrum Length As 
It Relates to Host

Rostral measurements of C. edulis alatae
and C. edulis and C. wahtolca apterae were
greater in aphids feeding on P. monophylla than
in those feeding on P. edulis, whereas those of
C. terminalis apterae were smaller (Table 1). In
C. terminalis, therefore, the rostrum followed
the opposite trend as the rest of the body.

Multivariate analyses corroborate the uni-
variate results. Lengths of the 3rd and 4th ros-
tral segments of C. terminalis contribute most,
and negatively, to the 3rd principal component
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Fig. 3. PCA eigenvectors for morphometric characters: (a) C. edulis alatae, (b) C. edulis aptera, (c) C. terminalis
apterae, and (d) C. wahtolca apterae.



(Fig. 3c), in contrast to the positive 1st compo-
nent contributions of those measurements in
the other 3 groups (Figs. 3a, 3b, 3d). The big
difference in the contribution of the rostral
segments in PCA is likely the cause of the
inverse relationship when the 1st and 3rd prin-
cipal components of C. edulis and C. terminalis
apterae are plotted on 2-dimensional graphs
(Fig. 2): P. edulis–feeding C. edulis tend toward
the negative and positive 1st and 3rd compo-
nents (Fig. 2a, upper left of graph), whereas P.
edulis–feeding C. terminalis tend toward the
negative for both components (Fig. 2b, lower
left of graph).

As rostrum length is not positively correlated
with other characters in C. terminalis, there
must be different influences acting on rostrum
length and overall aphid size. Sokal (1952),
studying P. populitransversus, also found rostrum
length to be relatively independent of overall
body size.

Aphid rostrum length has been tied to host
plant properties, with respect to aphids feed-
ing on pubescent hosts (Carter 1982, Moran
1986), and with respect to Cinara feeding on
woody hosts (Bradley 1961, Voegtlin 1976). We
cannot show conclusively a genetic correlation
to host-related selective pressure affecting ros-
trum length in Cinara, but other evidence is
suggestive. Moran (1986), because she studied
variation between species, concluded that ros-
trum length in Uroleucon was under strong
selective pressure and she even voiced a con-
cern that environmentally or host-correlated
characters, such as rostrum length (and tarsal
length; Kennedy 1986, Moran 1986), may con-
found phylogenetic studies. Also, Favret and
Voegtlin (2004) showed that speciation in Pinus–
feeding Cinara is caused in part by host shifts,
with new species developing on a new host at
the same feeding site as on the ancestral host.
Further, since feeding site and rostrum length
are strongly correlated (Bradley 1961), we be-
lieve that rostrum length plays a constraining
role as to possible patterns of speciation, and
therefore is likely influenced by a strong genetic
component.

Whether difference in rostrum length be-
tween P. edulis– and P. monophylla–feeding C.
terminalis is due to evolutionary selection or
environmental induction, the morphology of
the host is probably the main cause. Cinara
terminalis feeds on the growing tips of the
branches of its host. Perhaps the bark of the

shoots of P. monophylla is thinner (whether for
developmental or environmental reasons) than
that of P. edulis. The reverse might be true for
C. edulis and C. wahtolca that feed on twigs
and branches. Although we did not perform
host-shift tests, based on our findings of ros-
trum size, it is likely that populations of any of
the 3 species, were they moved to the other
pinyon host, might suffer a loss of fitness related
to rostrum length (Hawthorne and Via 2001).

We have posited the relative independence
of rostrum length and overall size, our evidence
largely coming from C. terminalis. However,
in the case of the other 2 species, the 2 charac-
ter suites may show correlated response
(Nijhout and Emlen 1998). It is possible that
selective pressure (or environmental induc-
tion) to increase the size of the rostrum may
cause a concomitant increase in overall size.
However, because all 3 species were larger on
P. monophylla, it seems more likely that, if there
is selective pressure, it favors larger aphids (as
opposed to longer rostra) on P. monophylla. It
is possible that a concomitant increase in ros-
trum length in C. edulis and C. wahtolca would
be mal- or nonadaptive (Price and Langen 1992).

Taxonomic Comments

Foottit and Mackauer (1990) found no geo-
graphic population differences in C. nigra (Wil-
son) using PCA, Foottit (1992) found 3 mor-
phologically distinct groups of C. contortae
Hottes, but insufficient evidence to warrant
separating them taxonomically, and Watson et
al. (1999) described a new species of Cinara
based on morphometric evidence. Caution pre-
cludes calling the Cinara on different pinyon
species host-based races. Although there are
clear size differences in the host-based popu-
lations of all 3 Cinara species, we cannot come
to any firm taxonomic conclusions without
showing that differences are genetically based
(i.e., selected for). We have no other evidence
for C. edulis. The opposing trends in rostrum
and overall size in C. terminalis (in compari-
son with C. edulis and C. wahtolca) are com-
pelling. Two known genetic clades of C. termi-
nalis are geographically based, but the geogra-
phy does not completely mirror host distribu-
tion (Favret and Voegtlin 2004). We performed
morphometric analyses with the aphids in these
2 clades, but the results were less conclusive
than the host-based results presented here.
Further study of C. terminalis is required.
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In the case of C. wahtolca, however, there
is clear evidence of divergent lineages based
on cytochrome oxidase 1 sequence data (Favret
and Voegtlin 2004). Here we found that most
examined characters showed significant differ-
ences based on aphid host affiliation, and dif-
ferences were generally more pronounced
than in C. edulis and C. terminalis (by compar-
ing P-values). Three of the 5 ratios intended to
control for size were also different, as well as
all of the setal lengths (in contrast with the
other species). Although the host-based mor-
phometric differences between populations of
C. wahtolca are largely based on size, as noted
above, there is no reason to discount size as a
critical component in morphometric differen-
tiation of host races or even species. Given the
genetic corroboration, we believe the popula-
tions of C. wahtolca found on the 2 species of
pinyon are indeed different species, and we
will describe the new species, feeding on P.
monophylla, in a future paper.
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