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Abstract. Computer-automated identification of insect species has long been sought
to support activities such as environmental monitoring, forensics, pest diagnostics,
border security and vector epidemiology, to name just a few. In order to succeed,
an automated identification programme capable of addressing the needs of the end
user should be able to classify hundreds of taxa, if not thousands, and is expected
to distinguish closely related and hence morphologically similar species. However, it
remains unknown how automated identification methods might handle an increase in
data quantity, be it in reference imagery or taxonomic diversity. We sought to test the
scalability of an automated identification method in terms of the number of reference
specimens used to train the classifier and the number of taxa into which the classifier
should assign unknown specimens. Is there an optimal number of reference images,
where the cost of acquiring more images becomes greater than the marginal increase in
identification success? Does increasing taxonomic diversity affect identification success,
whether negatively or positively? In order to test the scalability of the automated insect
identification enterprise, we used a sparse processing technique and support vector
machine to test the largest dataset to date: 72 species of fruit flies (Diptera: Tephritidae)
and 76 species of mosquitoes (Diptera: Culicidae). We found that: (i) machine vision
methods are capable of correctly classifying large numbers of closely related species; (ii)
when the misclassification of a specimen occurs at the species level, it is often classified
in the correct genus; (iii) classification success increases asymptotically as new training
images are added to the dataset; (iv) broad taxon sampling outside a focal group can
increase classification success within it.

Computer-assisted insect identification was suggested almost
50 years ago (Rohlf & Sokal, 1967). The present desire for such
a system is attested to by the several attempts to identify arthro-
pods in specific research contexts, such as spider ecology (Do
et al., 1999; Russell et al., 2000), aquatic environmental mon-
itoring (Larios et al., 2007; Lytle et al., 2010) and orchard pest
monitoring (Wen et al., 2009). However, the realization of an
automated identification system available as an end-user appli-
cation remains elusive (MacLeod, 2007; MacLeod et al., 2010).

Although computing and imaging technology has advanced
dramatically in recent years, we are not yet at the point of being
able to render digitally and analyse comparatively thousands
of biological objects in three dimensions. Thus, the images
themselves have so far been two-dimensional. In the case of
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automated insect identification, this imaging constraint has led
to a tendency to analyse images of wings (Daly et al., 1982; Yu
et al., 1992; Vaňhara et al., 2007; Bhanu et al., 2008; Santana
et al., 2014; Li & Cao, 2015). Insect wings are relatively flat and
easy to image in a standard orientation, especially in comparison
with other anatomical features such as genitalia, often the
structures of most interest to insect taxonomists for identifying
species.

The most common approach to automated identification is to
create a set of reference images representing, as best as possible,
the breadth of morphological variability of each taxon. These
training images are used to extract a set of machine-interpretable
characters that are, in turn, used to evaluate an image of an
unidentified specimen and assign it to a taxon (i.e. classify it).
Most previous research efforts were proofs of the concept of
automated classification and therefore employed research data
of limited taxonomic scope. For example, Lytle et al. (2010),
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Wen et al. (2009) and Santana et al. (2014) used only nine
stonefly, five moth, and five orchid bee taxa, respectively. To
date, it has not been clear how automated identification technol-
ogy might scale up when presented with much larger datasets
of reference imagery, in terms of both the number of taxa and
the number of specimens per taxon. Is there an optimal number
of reference images, or is there a threshold of diminishing
returns where the cost of acquiring more images is greater than
the marginal increase in identification success? Likewise, does
increasing the number of classes (e.g. species) affect identi-
fication success, whether positively or negatively, perhaps by
increasing the measurable morphological overlap between taxa?

We explored machine vision automated identification meth-
ods on insect image datasets that were significantly larger than
ever before tested and with sets of closely related species. We
employed modern sparse signal analytics (Sieracki & Benedetto,
2005) and machine learning methods on two-dimensional
images of membranous wings to automatically identify species
of fruit flies (Diptera: Tephritidae) and mosquitoes (Diptera:
Culicidae). Fruit flies are one of the most economically dam-
aging insect pests of agriculture. For example, in the countries
of the eastern Mediterranean, the Mediterranean fruit fly causes
US$298 million in direct (e.g. yield loss) and indirect (e.g.
environmental impact) damage annually (International Atomic
Energy Agency, 2001); the potential establishment in the U.S.
of this same species might cost as much as US$800 million
annually in direct economic damage and increased manage-
ment efforts (Miller et al., 1992). Tephritidae have a diversity
of pigment patterns on their wings, often used by taxonomists
for identification purposes. Mosquitoes are the most impor-
tant insect vectors of human disease, transmitting malaria, yel-
low and dengue fevers, and many other diseases. An estimated
7.5 million human deaths in the decade ending in 2012 have been
attributed to malaria alone (World Health Organization, 2013).
In contrast with the wings of fruit flies that exhibit taxon-specific
variation in patterning, those of mosquitoes are covered with
scales that often rub off, resulting in a great deal of pattern vari-
ation that is not at all taxon-specific.

The economic and medical importance of these two groups of
Diptera means that identification services are in high demand.
It also means that the museum specimens of these insects are
relatively well identified in comparison to other less well-studied
insect groups, an important consideration for building sets of
training images.

Materials and methods

Image acquisition

Images of insect wings were acquired from identified museum
specimens during the first half of 2010. Identifications were
recorded from specimen or unit tray labels in collections
curated by world experts. Budget constraints prevented the
re-identification and re-curation of the multiple thousands of
specimens. Wings were not removed; they were imaged in
silhouette with a white background. We selected specimens that

Fig. 1. A specimen of Ceratitis cosyra rotated under a stereoscope for
a mostly clear view of the ventral aspect of the right wing.

had their wings spread out enough to enable a relatively unob-
structed view when rotated under the stereoscope lens (Fig. 1).
Because the wings were imaged in silhouette, we did not priori-
tize dorsal or ventral views, nor did we preferentially select right
or left wings. Images of pinned specimens were taken with a
Leica M205C stereoscope with a 0.63× plan-apochromat objec-
tive, and a Leica DFC295 3 megapixel digital camera tied to
Leica’s Firecam software. In general, we kept the stereoscope at
a set zoom level for each species, but aimed to fill the camera’s
field of view with different species. Therefore, image analyses
were not able to consider overall wing size.

Fruit flies were imaged in the Entomology Department of
the U.S. National Museum of Natural History, Washington,
DC, U.S.A. We selected species for which at least 25 wings
could be readily imaged from across the taxonomic diversity of
Tephritidae, including three of the six recognized subfamilies,
11 of the 27 tribes, 24 of the 481 genera, and 72 of the 4352
species (Norrbom, 2010; Table 1). The current nomenclature
was researched in Systema Dipterorum (Pape & Evenhuis, 2013)
with the exception of Ceratitis querita, which was found in De
Meyer & Friedberg (2006). Rarely, fruit fly species are known
to be sexually dimorphic (Sivinski & Dodson, 1992; Sivinski
& Pereira, 2005; Dujardin & Kitthawee, 2013), even in wing
shape and venation (Aluja & Norrbom, 1999). We did not sex the
flies, and therefore our image capture might have inadvertently
favoured one sex over the other if one was better represented in
the collection. Figure 2 presents a sampling of fruit fly training
images from multiple genera.

Mosquitoes were from the U.S. National Museum of Natural
History’s collection located at the Walter Reed Biosystematics
Unit at the Museum Support Center, Suitland, MD, U.S.A.
Again, we selected species across the taxonomic diversity of
Culicidae, including both subfamilies, eight of 11 tribes, 16
of 42 genera, and 79 of 3492 species (Rueda, 2008; WRBU,
2014; Table 2). The current nomenclature was researched in
the Walter Reed Biosystematics Unit Systematic Catalog of
Culicidae (WRBU, 2014), but we retained the classical generic
combinations for Aedes species, as the newer ones are not well
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Table 1. Classification success rates of 1800 fruit flies into 24 genera
and 72 species.

Genus Species
Classification
rate (%)

Acanthiophilusa helianthi (Rossi 1794) 92
Aciurinab bigeloviae (Cockerell 1890) 96
Anastrephac 95

anduzei Stone 1942 84
canalis Stone 1942 68
coronilli Carrejo & Gonzalez 1993 60
crebra Stone 1942 84
debilis Stone 1942 80
distincta Greene 1934 52
fraterculus (Wiedemann 1830) 88
ludens (Loew 1873) 84
minuta Stone 1942 84
nigrifascia Stone 1942 92
obliqua (Macquart 1835) 48
panamensis Greene 1934 84
pickeli Lima 1934 64
robusta Greene 1934 88
serpentina (Wiedemann 1830) 88
spatulata Stone 1942 64
striata Schiner 1868 76
superflua Stone 1942 96
suspensa (Loew 1862) 88
turpiniae Stoen 1942 72
zeteki Greene 1934 60
zuelaniae Stone 1942 36

Bactrocerad 93
cucurbitae (Coquillett 1899) 88
frauenfeldi (Schiner 1868) 96
umbrosa (F. 1805) 92

Ceratitise 97
anonae Graham 1908 76
capitata (Wiedemann 1824) 88
colae Silvestri 1913 76
cosyra (Walker 1849) 72
ditissima (Munro 1938) 88
fasciventris (Bezzi 1920) 84
flexuosa (Walker 1853) 80
hamata Meyer 1996 72
marriotti Munro 1933 84
podocarpi (Bezzi 1924) 88
querita (Munro 1937) 100
rosa Karsch 1887 76
rubivora Coquillett 1901 84
simi Munro 1933 96

Dacusd 96
bivittatus (Bigot 1858) 96
ciliatus (Loew 1862) 92

Dioxynaa picciola (Bigot 1857) 92
Euarestaa 98

aequalis (Loew 1862) 96
bella (Loew 1862) 100

Euarestoidesa acutangulus (Thomason 1869) 88
Eurostab floridensis Footte 1977 100
Eutretaf diana (Osten Sacken 1877) 92
Neaspilotag 96

achilleae Johnson 1900 100
albidipennis (Loew 1861) 84

Table 1. continued

Genus Species
Classification
rate (%)

Paracanthaf gentilis Herin 1940 92
Rhagoletish 97

cingulata Wilson & Lovett 1913 80
indifferens Curran 1932 96
pomonella (Walsh 1867) 100

Strauziai longipennis (Wiedemann 1830) 92
Tephritisa 96

araneosa (Coquillett 1894) 92
signatipennis Foote 1960 100
stigmatica (Coquillett 1899) 96

Terelliag occidentalis (Snow 1894) 92
Tomoplagiaj quinquefasciata (Macquart 1835) 80
Toxotrypanac curvicauda Gerstaecker 1860 92
Trupaneaa 99

actinobola (Loew 1873) 88
jonesi (Curran 1932) 92
nigricornis (Coquillett 1899) 92
wheeleri (Curran 1832) 88

Trypanarestaa delicatella (Blanchard 1852) 88
Urophorak 69

pauperata (Zaitzev 1945) 60
sirunaseva (Hering 1938) 72
solstitialis (L. 1758) 64

Xanthaciuraa insecta (Loew 1862) 100
Zonosematah electa (Say 1830) 88

aTephritinae–Tephritini; bTephritinae–Dithrycini; cTrypetinae–
Toxotrypanini; dDacinae–Dacini; eDacinae–Ceratidini; fTephritinae–
Eutretini; gTephritinae–Terelliini; hTrypetinae–Carpomyini;
iTrypetinae–Trypetini; jTephritinae–Acrotaeniini; kTephritinae–
Myopitini.

defined and have not been universally adopted (Rueda, 2008).
We photographed 100 wings per species of Anopheles and 25
for all others. Only female mosquitoes were photographed.
Mosquito wings are covered in scales that are often lost or
rubbed off during the insect’s life or during museum preparation.
We prioritized imaging wings that were in relatively good
condition, although it was extremely rare to find any mosquito
with fully intact wing scales. Figure 3 shows training images of
wings of three important disease vectors.

The image capture rate for fruit flies averaged 29.5 h–1 and that
of mosquitoes was 22.9 h–1. The fruit flies were easier to image
because the specimens themselves were usually larger than
mosquitoes and their wings were more likely to be spread to the
side and thus more readily viewed: less time was spent rotating
the specimen so as to get an optimal view of the wing. The fruit
fly collection was physically located immediately adjacent to
the imaging station, whereas the mosquitoes were some distance
away, also contributing to the difference in image capture rates.

Image analysis

Wing images were rotated and flipped as necessary so that the
base of the wing was near the right margin of the image and
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Fig. 2. Twenty photographs of a variety of fruit fly wings showing the diversity in shape and patterning at the generic level.

the posterior margin of the wing was near the bottom margin
of the image. As such, each image appeared to be that of the
dorsal aspect of the left wing with the specimen facing forward,
even if the actual image was of the right wing or the ventral
side. In order to achieve reasonable consistency among such
a large set of images, we developed a preprocessing script in
matlab (MathWorks Inc., Natick, MA, USA) that employed
standard techniques to find, align and crop the wing region of
each photograph. Within the matlab image processing toolbox,
we applied thresholding and filling to produce a bitmap mask
of the wing, the leading edge was identified using a Hough
transform, and the remaining boundaries were determined by
comparison with an expected shape template so that portions
of the insect body or stray limbs that intersected the wing did
not bias the cropping window. The image was then aligned so
that the leading edge was approximately level and cropped to
the boundary of the mask. Output images were reviewed by
eye to catch and correct rare errors before further processing.
Within each working group, these cropped wing images were
then further processed to resize them to a common resolution
and greyscale range so that they could be compared against
their peers without regard to photographic variations in lighting
or magnification. Lighting correction was limited to a simple
automatic contrast adjustment in Adobe Photoshop, followed

by re-ranging the greyscale levels to span the available bit
depth. Cropping and resizing the images to a common resolution
meant that the absolute size of wings was not considered in this
analysis, leaving only detail patterns within the wings and, to a
lesser extent, their shape as possible distinguishing features.

With the images coarsely co-aligned, we used a sparse pro-
cessing technique called greedy adaptive discrimination (GAD)
(Sieracki & Benedetto, 2005; Sieracki et al., 2008) to find and
extract commonly occurring signature characteristics within the
image groups. To summarize, GAD works by simultaneously
considering an ensemble of data and seeking a common, joint
representation by which to compactly describe the members
of the ensemble. The representation is selected according to a
mathematical cost function and can be thought of as a form of
nonlinear minimization problem. It is thus related to other sparse
analytics approaches such as the compressive sensing methods
introduced by Candès et al. (2006), Donoho (2006), and others.
All of these methods focus on the recovery of information with
a relatively small number (i.e. a sparse set) of coefficients and
features. GAD uses joint information from multiple samples to
recover signals significantly below the noise floor that would
otherwise limit recovery from any one sample alone; moreover,
GAD is largely unaffected by positional jitter between these
multiple samples. In the context of the present study, this results
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Table 2. Classification success rates of 1975 mosquitoes into 16
genera and 79 species.

Genus Species
Classification
rate (%)

Aedesa 90
aegypti (L. 1762) 68
albolineatus (Theobald 1904) 92
albopictus (Skuse 1894) 72
angustivitttatus Dyar & Knab 1907 68
canadensis (Theobald 1901) 68
cataphylla Dyar 1916 80
communis (De Geer 1776) 84
dorsalis (Meigen 1830) 84
excrucians (Walker 1856) 76
fitchii (Felt & Young 1904) 72
intrudens Dyar 1919 88
pullatus (Coquillett 1904) 92
punctor (Kirby 1837) 48
scapularis (Rondani 1848) 80
serratus (Theobald 1801) 84
sollicitans (Walker 1856) 60
sticticus (Meigen 1838) 80
taeniorhynchus (Wiedeman 1821) 80
togoi (Theobald 1907) 52
triseriatus (Say 1823) 92
vexans (Meigen 1830) 84

Anophelesb 96
aconitus Doenitz 1902 92
albimanus Wiedemann 1820 92
dirus Peyton & Harrison 1979 88
marajoara Galvao & Damasceno 1942 84
minimus Theobald 1901 92
oswaldoi (Peryassu 1922) 96
pseudopunctipennis Theobald 1901 76
punctulatus Donitz 1901 80
quadrimaculatus Say 1824 96
triannulatus (Neiva & Pinto 1922) 92

Coquillettidiac 88
fasciolata (Lynch Arribalzaga 1891) 68
nigricans (Coquillett 1904) 80
perturbans (Walker 1856) 88

Culexd 91
annulirostris Skuse 1889 64
bitaeniorhynchus Giles 1901 80
coronator Dyar & Knab 1906 76
erraticus (Dyar & Knab 1906) 92
fuscocephala Theobald 1907 84
mollis Dyar & Knab 1906 76
nigripalpus Theobald 1901 76
pipiens L. 1758 92
quinquefasciatus Say 1823 80
restuans Theobald 1901 80
salinarius Coquillett 1904 56
sitiens Wiedemann 1828 84
tarsalis Coquillett 1896 68
tritaeniorhynchus Giles 1901 88
vishnui Theobald 1901 84

Culisetae 86
incidens (Thomson 1869) 76
inornata (Williston 1893) 88

Table 2. continued

Genus Species
Classification
rate (%)

Deinoceritesd 87
cancer Theobald 1901 60
magnus (Theobald 1901) 92
pseudes Dyar & Knab 1909 72

Haemagogusa argyromeris Dyar & Ludlow 1921 88
Limatusf 78

asulleptus (Theobald 1903) 72
durhamii Theobald 1901 84

Lutziad 88
fuscana (Wiedemann 1820) 88
halifaxii (Theobald 1903) 84

Mansoniac 84
titillans (Walker 1848) 80
uniformis (Theobald 1901) 76

Orthopodomyiag signifera (Coquillett 1896) 92
Psorophoraa 81

albipes (Theobald 1907) 68
ciliata (F. 1794) 92
cingulata (F. 1805) 72
confinnis (Lynch Arribalzaga 1891) 64
ferox (von Humboldt 1819) 84
pygmaea (Theobald 1903) 88

Toxorhynchitesh 93
moctezuma (Dyar & Knab 1906) 60
septentrionalis (Dyar & Knab 1906) 100
theobaldi (Dyar & Knab 1906) 60

Tripteroidesf aranoides (Theobald 1901) 96
Uranotaeniai 96

anhydor Dyar 1907 100
bicolor Leicester 1908 84
geometrica Theobald 1901 88
lowii Theobald 1901 88
lutescens Leicester 1908 88
obscura Edwards 1915 56

Wyeomyiaf felicia (Dyar & Nunez-Tovar 1927) 88

aAedini; bAnophelinae; cMansoniini; dCulicini; eCulisetini; fSabethini;
gOrthopodomyiini; hToxorhynchitini; iUranotaeniini.

in robustness to image noise and variations in alignment. This
is born out in the results shown later in the paper, which are
achieved with only course-grained wing position registration
between the hand-acquired photographs, with no steps needed
to suppress noise, speckle, shadows, bright spots or other pho-
tographic imperfections.

The GAD feature vectors were used as input for support
vector machine (SVM) learning and classification (cf. Burges,
1998). SVM is a machine learning tool that is largely agnostic
to the statistical structure of data other than at the boundary
between classes (Cristianini & Shawe-Taylor, 2000; Scholkopf
& Smola, 2002). SVM attempts to separate classes of data
by plotting feature vector points in an N-dimensional space
and drawing a boundary between the classes. The results in
our case are a set of emergent feature characteristics that
can thereafter be treated analogously to principal components
results. These characteristics are then exploited to distinguish
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Fig. 3. Photographs of a wing of each of the mosquitoes Culex pipiens,
Anopheles quadrimaculatus and Aedes albopictus, representing the
three major genera of disease vector species.

each target group of insects from respective confounding or
challenge groups. The degree to which each set of signature
characteristics occurs in any particular image generates a feature
vector. While our methods were implemented using a library of
in-house software, SVM tools with similar function are widely
available (e.g. Pelckmans et al., 2002, matlab SVM toolbox).
It should be noted that the SVM classifiers were adjusted to
minimize the overall interspecific error rates, without regard to
whether the errors were false positives or false negatives and
without preference to any classification category. While it is
possible to improve success in some categories at the expense
of others, this trade-off was not explored in the present study.

The signature features employed by the system were adap-
tively discovered from each dataset and, as such, do not gener-
ally correspond to any morphological or morphometric character
ordinarily employed by taxonomists. We have made a tentative
investigation of the nature of the discovered characteristics, con-
firming, for example, that spatial patterns in certain areas of the
wings are exploited among the discriminatory features between
some species; however, we report here only on our success in
discrimination and a detailed analysis of those emergent fea-
tures’ characteristics remains for future work.

Classification ‘success’, defined as a machine-delivered clas-
sification of a test that conforms to the taxonomist-delivered
identification, was first quantified using a leave-one-out method.
The specific analyses we ran with the leave-one-out method
included: (i) 25 images of each of 72 species of Tephritidae; (ii)
25 images each of 79 species of Culicidae; (iii) and 100 images
each of ten species of Anopheles. Within each working group of

insects, the entire dataset of identified images was used to train
the program in pattern recognition, with the exception of a single
individual, which was then classified based on the prior training.
The procedure was repeated as many times as there were images,
each repetition leaving one individual out of the training set to
be subsequently classified. Results are summarized in confusion
matrices; these indicate the frequency with which identified indi-
viduals of each species were assigned to each of the possible
species within the classification set. The sum of the counts on
the diagonal divided by the total number of specimens in the
experiment provides a measure of overall classification success.

The ability to classify using sets of training data of differ-
ent sizes was further quantified using the method of k-fold
cross-validation (Kohavi, 1995) on the 1000 images of ten
species of Anopheles. In this approach, 1/k% of the data is used
for testing and the remaining (100 to 1/k%) for training. At each
repetition, different training and testing subset permutations are
selected at random from the sample space of available images.
The proportion of data used for training is varied in size (k), with
training and testing repeated multiple times (> 30) at each size,
each time with different data permutations, to generate paramet-
ric performance statistics. In this instance we varied the training
set size from a single individual up to 90% of the available data,
repeating each one 40 times. Statistics produced by this process
give an indication of how well our classifier results will gener-
alize to new, independent sets of data.

Results

Fruit flies (Diptera: Tephritidae)

The full 72-species confusion matrix of fruit flies, with 25
images per species, yielded an overall classification success
rate of 86.2% to the species level (Fig. 4a) and 94.4% to genus
(Fig. 4b). Classification success ranged from 36 to 100% for
species, and from 69 to 100% for genera (Table 1). The most
frequent misclassifications were for species within a genus. For
example, if a specimen of an Anastrepha species was misclas-
sified, it was most likely to be classified as another species of
Anastrapha rather than as a species of another genus (Fig. 4a).
This phenomenon was evident for both of the genera with the
most sampled species, Anastrepha and Ceratitis, with 22 and
14 species, respectively. The misclassification rate for species
of Anastrepha averaged 25.5%, but the likelihood of being
correctly identified to genus was 92% (22 species possible out
of 72 in all). Likewise, for Ceratitis, the rate of misclassification
to the species level was 17.2% (Table 1), but the likelihood of
those being classed correctly within the genus was 97% (13
species out of 72). The lowest classification success was seen in
individual species of Anastrepha (A. zuelaniae and A. obliqua)
and at both within-genus species and genus level in Urophora.
We achieved 100% classification success in distinguishing
the species Ceratitis querita, Euaresta bella, Eurosta flori-
densis, Neaspilota achilleae, Rhagoletis pomonella, Tephritis
signatipennis and Xanthaciura insecta, and the genera Eurosta
and Xanthaciura (Table 1).

© 2015 The Royal Entomological Society, Systematic Entomology, 41, 133–143
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Fig. 4. (a) Confusion matrix for the automated classification of 1800 fruit flies into 72 species, shown grouped in blocks by genus. The values on the
diagonal indicate the frequency of successful classification of individuals within each species and values off the diagonal indicate errors. The last row,
labelled ‘null’, contains counts of instances in which a specimen could not be classified. Asterisks denote genera for which a single species was included
[refer to (b) and Table 1 for genus and species names]; (b) confusion matrix for automated classification of 1800 fruit flies into 24 genera; (c) confusion
matrix for automated classification of 1975 mosquitoes into 79 species. Asterisks denote genera for which a single species was included [refer to (d)
and Table 2 for genus and species names]; (d) confusion matrix for automated classification of 1975 mosquitoes into 17 genera; (e) confusion matrix
for automated classification of 1000 Anopheles specimens into ten species; (f) confusion matrix for automated classification of 1975 mosquitoes into
four classes, the three disease-vector genera and a fourth class including all others.
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Fig. 5. K-fold testing of the classification of 1000 specimens into ten
species of Anopheles. The first datum (1 on the y-axis) represents a test
involving a single training image and an average of 20% classification
success. The last datum (99 on the y-axis) represents a test involving
99 training images (i.e. a leave-one-out analysis) and a classification
success rate of 80.6%.

Mosquitoes (Diptera: Culicidae)

Overall classification success for 79 mosquito species was
80.3% (Fig. 4c). Classification success ranged from 48 to 100%
for species and from 78 to 96% for genera (Fig. 4d; Table 2).
Of the three large genera of important disease vectors, Aedes,
Culex and Anopheles had 90.4, 91.2 and 95.6% genus classi-
fication success, respectively (Table 2). Aedes and Culex had
lower species classification success (80.3 and 78.7%, respec-
tively), whereas Anopheles species had an overall classification
rate of 88.8%. However, when we analysed the ten species of
Anopheles alone, that is without species of other genera, and
with the maximum available number of training images (100
per species), we saw the classification success rate drop to 80.6%
(Fig. 4e). Using more training images and restricting the analysis
to ten species of a single genus did not in itself yield better per-
formance. Most notably, Anopheles aconitus, Anopheles albi-
manus and Anopheles marajoara were less frequently correctly
classified in the Anopheles-only analysis with 100 images per
species (Fig. 4e) than in the combined analysis with 25 images
per species (Fig. 4c; Table 2).

Increasing the size of the Anopheles-only training set yields
better results, following a roughly asymptotic curve in our
k-fold validation test (Fig. 5). For each proportionate quantity
of training data, the training testing cycle was repeated 40
times using different random permutations of the training and
testing groups. Using one wing image as a training example, the
classification success rate is approximately twice that of chance
alone, approximately 20%. Using 10 of the 100 wing images
as training, classification success increases to 67%. We see
asymptotic behaviour and diminishing returns in adding more
training data. The last point in Fig. 4f reflects the leave-one-out
testing overall success rate, that is, a single test image classified
against 99 training images.

Finally, we considered the three disease vector genera and a
fourth category that included all 14 others. When we constrained
the system to distinguish only these four classes within the
79 species× 25 image training set, we saw overall genus-level
classification success rates of 92.9%: 91.4% for Culex, 92.0%
for Aedes, 92.7% for the ‘others’ category, and 95.6% for
Anopheles (Fig. 4f).

Discussion

Pattern recognition algorithms often employ a training dataset
meant to represent the variability inherent in the pattern: the
larger the training set of images, the greater the range of
variability. This range increases as training images are added to
individual taxa, as well as when the number of taxa is increased.
Intuitively, one might imagine that larger training datasets within
classes (taxa) would increase classification success, as the size of
the virtual classification space increases. Conversely, one might
expect that the addition of classes would decrease the rate of
successful classification as the number of choices increases.

Generally, the performance of our analyses with significantly
larger datasets was consistent with other automated arthropod
identification studies with fewer taxa, which had classification
success rates ranging from 81 to 96% (Table 3). Each of those
studies used different discriminant methods and taxa, and each
had their own particularities with regard to specimen preparation
and condition, so one-to-one comparisons are not justified.
However, it is important to note that previous studies did not
explicitly target closely related species that are generally harder
to identify, whether by person or by machine.

Examining the pattern of classification, when a specimen is
misclassified, it is more likely to be misclassified as a differ-
ent species of the same genus than that of a different genus.
This phenomenon, also seen by Do et al. (1999), is graphically
demonstrated in Anastrepha and Ceratitis (Fig. 4a) and Aedes
and Culex (Fig. 4c). Because insect classification other than
at the species level is not part of the character extraction and
training, the machine is independently recognizing patterns cor-
related with taxonomists’ classifications. However, taxonomist
misidentifications are more likely in groups of closely related
species, so specimens misidentified to species but attributed cor-
rectly to genus in our training data could bias our results (see
later).

Anastrepha specimens were likely to be classified as another
species in the same genus, but they were also the most likely
of tephritid species to be misclassified: A. distincta, A. obli-
qua and A. zuelaniae only had classification rates of 52, 48 and
36%, respectively (Fig. 4a; Table 1). The difficulties with Anas-
trepha may be related to the taxonomic complexity of the genus:
it has over 184 species, has not been thoroughly revised in its
entirety for a long time (Aluja, 1994) and is replete with species
complexes (Norrbom, 1988, 1998, 2002, 2009). Aedes punctor
and Aedes togoi had the lowest classification rate, by a margin,
among the mosquitoes (48 and 52%; Table 2). Aedes punctor
was most frequently mistaken for Aedes cataphylla (Fig. 4c);
these two species can be confused even using DNA barcodes
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Table 3. Summary of select automated arthropod identification studies employing two-dimensional imagery.

Study Subject No. of species Average no. of images per species Classification success (%)

Weeks et al. (1997) Ichneumonid wings 5 35 94
Do et al. (1999) Spider genitalia 6 9 81
Watson et al. (2003) Macrolepidoptera 35 20 83
Wen et al. (2009) Orchard moths 5 93 88
Lytle et al. (2010) Stonefly naiads 4 310 82
Kang et al. (2012) Butterflies 7 38 86
Joutsijoki et al. (2014) Benthic macroinvertebrates 8 169 96
Santana et al. (2014) Orchid bees 5 28 88
This study Fruit fly wings 72 25 86
This study Mosquito wings 79 25 80

(Zhang et al., 2012). Reinert et al. (2004) split the Aedes species
into multiple other genera and subgenera; although they had
placed A. togoi in a separate genus (Tanakaius), most misclassi-
fications of that species were for other species of Aedes (Fig. 4c).

Unsurprisingly, training datasets of increasing size increase
the rate of classification success. A single training specimen
yields predictably low classification success (20%), but the
success rate increases rapidly with the first added specimens
(67% with ten training images). This rate then extends gradually
as the training set size increases (Fig. 5). Each set of ten
additional training images between 20 and 90 adds an average
of 1.0% to the classification success rate; this gain is asymptotic
and cannot continue indefinitely. Watson et al. (2003) analysed
only 20 training images of each of their Lepidoptera species,
but they extrapolated their classification success curves out to
50 images and found similar results to our own. Towards the
development of an end-user-ready system, a calculation of the
ideal number of training images to acquire could thus be made
for any number of images beyond a minimum of 30 or so.
Assuming the specimens are available, this cost–benefit analysis
would take into account the number of taxa to be included,
the financial cost of imaging each additional specimen, and the
economic value of the actual classifications to be made.

Perhaps the most surprising result of our analyses was the
higher classification success of Anopheles in the context of the
79-species analysis compared with the analyses of Anopheles
species alone. Although the classification success of Anophe-
les species alone topped out at 80.6% when training with 100
images per species (Fig. 4e), when only 25 training images were
used along with the other 69 mosquito species, specimens of
Anopheles were correctly classified to species 88.8% of the time
(Fig. 4c). It seems that the accurate identification of species may
benefit more from having a larger variety of comparison points
outside the genus than from increasing the training set within
the genus. This benefit occurred even though the potential num-
ber of competing categories into which an individual Anopheles
specimen could be misclassified increased from nine to 78, and
thus the chance rate of correct classification decreased from 1 in
10 to 1 in 79. This phenomenon may be due to improved learning
by the machine classifier: a larger number of independent com-
parison points provides an increased opportunity to distinguish
differences in noisy data. The system may likewise benefit from

improved feature discovery in a larger dataset. Interestingly, a
similar phenomenon has been documented in phylogenetic stud-
ies where an increase in taxon sampling often leads to better phy-
logenetic resolution (Agnarsson & May-Collado, 2008; Heath
et al., 2008; Nabhan & Sarkar, 2012).

An important but unquantifiable variable in any test of insect
machine vision classification is the accuracy of the training data;
the starting assumption is that the initial taxonomist-rendered
specimen identifications are correct. Unless the identifications
of the source specimens are independently ground-truthed, it
is impossible to know what the actual taxonomist-rendered
identification success rate is, which will then directly affect
the measured machine vision classification success. In fact, a
misidentified training specimen would corrupt each step of the
analysis: character extraction, training and classification. These
kinds of confounding input data are much more likely with
taxa that are hard to identify, the very taxa for which fully
developed automated identification methods would be most
valuable. Misidentifications in training data have a confounding
effect on automated identification methods: first by artificially
increasing the variability of a species’ training set, and secondly
by attributing variability to one species that rightly belongs
associated with another. Ensuring the accuracy of the basic
training datasets is paramount to a successful machine vision
automated identification system.

Experts do, of course, make mistakes, but it is hard to know
how often they do so because a large number of variables are at
play: these include the complexity of the taxon in question and
the taxonomist’s individual expertise, workload, and even mood
or time of day. In two studies, the top experts correctly identi-
fied dinoflagellate specimens 84–95% of the time (Culverhouse
et al., 2003); Epler (2001) documents a range of misidentifica-
tion of larval Chironomidae from 6 to 60%, with fully 25% of
713 specimens misidentified among ten taxonomists. The prob-
lem of misidentification is exacerbated when nonexperts are
the identifiers (Krell, 2004), prevalent in practical day-to-day
field identification situations. Quantification of the accuracy
of taxonomists and parataxonomists remains an important and
understudied problem.

Given these aforementioned inherent challenges with data
quality, our results are heartening. The machine’s ability to
correctly classify four out of five individuals to one of over
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70 species, many of which are closely related, is on par with
and may even surpass that of some professionals. Additionally,
once trained, per-specimen machine identification costs are
orders of magnitude less than those of salaried personnel.
A rapid screening system for vector mosquito genera, for
example (Fig. 4f), might greatly aid health workers in the
field by bringing new response capability to large numbers
of nonexpert technicians, increasing the number of insects
that can be examined while at the same time freeing the
expert professionals to focus more closely on high threat
risk specimens. One can envision a scenario where routine
identifications are automated, experts being called upon to
intervene in day-to-day field identifications only in the cases of
greatest importance, be they legal, security or economic.

It is important to underscore that expert taxonomists are
indispensable. Indeed, in order to correctly train the classifier
and keep it up to date as taxonomic science necessarily evolves,
taxonomic research and expertise will be increasingly valuable.
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Vaňhara, J., Muráriková, N., Malenovský, I. & Havel, J. (2007) Arti-
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