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Abstract: The cascading effects of microbe–plant symbioses on the second trophic level, such as
phytophagous insects, have been most studied. However, few studies have examined the higher
third trophic level, i.e., their natural enemies. We investigated the effects of the symbiotic associations
between an arbuscular mycorrhizal (AM) fungus, Rhizophagus irregularis (Glomerales: Glomeraceae),
a nitrogen-fixing bacterium, Bradyrhizobium japonicum (Rhizobiales: Bradyrhizobiaceae), and soybean,
Glycine max (L.) Merr. (Fabaceae) on two natural enemies of the soybean aphid, Aphis glycines Mat-
sumura (Hemiptera: Aphididae), the ladybird beetle Coleomegilla maculata (De Geer) (Coleoptera:
Coccinellidae), and the parasitoid Aphelinus certus Yasnosh (Hymenoptera: Aphelinidae). We mea-
sured the growth and survival in the predator and parasitoid reared on aphids feeding on soybean
inoculated seedlings. The rhizobium symbiosis alone was affected with a decreased rate of parasitoid
emergence, presumably due to decreased host quality. However, number of mummies, sex-ratio,
development time, and parasitoid size were all unaffected by inoculation. AM fungus alone or
co-inoculated with the rhizobium was unaffected with any of the parameters of the parasitoid. For
the predator, none of the measured parameters was affected with any inoculant. Here, it appears that
whatever benefits the microbe–plant symbioses confer on the second trophic level are little transferred
up to the third.

Keywords: Aphis glycines; Bradyrhizobium japonicum; co-inoculation; multitrophic interaction;
Rhizophagus irregularis; soybean aphid; natural enemy; symbiosis

1. Introduction

Interactions between plants, herbivores, and their natural enemies, such as preda-
tors and parasitoids, are important factors of trophic cascades and play a major role in
community diversity and functioning [1,2]. Plant size, vigor, and primary and secondary
chemistry are important mediators of the interactions between herbivores and their natural
enemies [3,4]. The mechanisms underlying these tritrophic interactions may be affected by
microbial root mutualists acting on variable plant traits [5]: qualitative and quantitative
effects induced by these belowground organisms can affect aboveground multitrophic
interactions [6–9]. Arbuscular mycorrhizal (AM) fungi and Rhizobia are two of the most
important and widely studied belowground microbes associated with plant roots [5,10,11].
Arbuscular mycorrhizal fungi form symbiotic associations with the roots of most terrestrial
plants [12]. During symbiosis, plants provide carbon for the AM fungus, and in return the
fungus transfers nutrients, particularly phosphates in phosphorus-poor conditions [13,14].
Rhizobia are bacteria that are associated with most legumes with which they form root
nodules and enhance nitrogen uptake via N2 fixation [15]. Therefore, legumes such as
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soybean can form beneficial tripartite symbiotic associations with AM fungi and rhizobia
simultaneously [16–18].

These rhizosphere interactions can also affect the abundance of herbivorous insects
associated with the aerial parts of plants [4,19]. Studies have shown that AM fungi can also
influence insects at higher trophic levels, namely, the predators [6,20,21] and parasitoids
of the herbivores [22–25]. For example, the inoculated sweet pepper with AM fungus
significantly increased the density of ladybird predators of the peach potato aphid, Myzus
persicae (Sulzer) (Hemiptera: Aphididae), in the field [26]. However, no clear effects were
seen in the greenhouse; even the plant–AM fungus symbiosis reduced colonization by
the aphid [26]. Another study showed a significant decrease in the population growth
of the aphid Rhopalosiphum padi Linnaeus (Hemiptera: Aphididae) and an increased rate
of parasitism in aphids by the parasitoid wasp Aphidius rhopalosiphi DeStefani-Perez (Hy-
menoptera: Braconidae), even when no clear effects of AM fungus on N and P concentration
were observed in the plant’s foliage [24]. These authors suggested there might be complex,
but yet unknown, species-specific cascading effects of AM fungus in the food chain. Fur-
thermore, rhizobia associated with plants has been shown to affect parasitoids [27,28] and
predators [29], but it seems that the results in all these studies were context-dependent.

In addition, prey quality determines the fitness of predators and parasitoids [4].
There is a need to better understand these interactions, especially with regard to possible
biological control agents of herbivorous insects [30,31].

Belonging to the second trophic level, phloem-feeding aphids can be influenced by AM
fungi [32–36] and Rhizobia [37,38] colonizing the roots of their host plants. However, the
direction of the effects has varied between experiments, the microbial symbionts sometimes
improving sometimes harming herbivore performance [39]. The nutritional quality of a
host plant, and especially the low level of nitrogen available in its phloem, significantly
limits aphid growth, including that of the soybean aphid [40]. In a previous study, Dabré
et al., in revision [41] showed that the inoculation of AM fungus and Rhizobia in soybean
increased the population growth of soybean aphid, Aphis glycines Matsumura (Hemiptera:
Aphididae), likely following an increase in the concentrations of N and P in the plant. Here,
we extend the work to study how AM fungus and rhizobia might indirectly affect the
natural enemies (third trophic level) of soybean aphid.

We studied the effects of a tripartite association between an AM fungus Rhizophagus
irregularis (Glomerales: Glomeraceae), a rhizobium Bradyrhizobium japonicum (Rhizobiales:
Bradyrhizobiaceae), and soybean Glycine max (L.) Merr. cv. ETNA on two natural en-
emies of the soybean aphid, the predatory ladybeetle Coleomegilla maculata (De Geer)
(Coleoptera: Coccinellidae) and the parasitoid Aphelinus certus Yasnosh (Hymenoptera:
Aphelinidae). We hypothesized that the inoculation of either microbial symbiont alone
or their co-inoculation would increase the rate of parasitism on aphids and their fitness,
presumably due to an increased nutritional quality in the host. Secondly, for the same
reasons, symbionts were expected to increase the performance (weight and development
time) of the predator. To test these hypotheses, we performed a growth chamber experiment
by using aphids fed on plants inoculated with four inoculants treatments (control without
inoculant, AM fungus alone, Rhizobium alone, and mycorrhizal and rhizobial inoculation).
Then, we compared different fitness parameters measured on parasitoids (mummification
rate, emergence rate, sex ratio, development time) and predators (development time, adult
and fourth instar weight) relative to microbial inoculant.

2. Materials and Methods
2.1. Study Insects

The soybean aphid, Aphis glycines, is an invasive pest of soybean that was first detected
in the United States in 2000 and quickly became the dominant and significant insect pest
in soybean in North America [42,43]. It has a high reproductive capacity and in high
numbers can damage the plant sufficiently enough to cause significant yield loss [40,44].
In Quebec, A. glycines is only an occasional pest of soybean because its populations do
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not usually reach threshold levels when the plant is in its most susceptible life stages:
vegetative and flowering [45]. Aphid populations are also usually kept under control by
natural enemies [46].

In this study, the soybean aphid was provided by the entomological lab of Jacques
Brodeur (Dabré et al., in revision) [41]. Individuals were maintained on soybean, Glycine max.
cv. ETNA in walk-in growth chamber under the following conditions: 60–70% RH, L16:D8
photoperiod, at a constant temperature of 22 ◦C. Older plants with aphids were replaced
weekly by two-week-old plants.

The parasitoid wasp Aphelinus certus is a natural enemy of soybean aphid from Asia,
introduced accidently in Ontario (Canada) in 2007 [47]. It has since become common
throughout the soybean-growing regions of North America [48–50]. We established a
colony of A. certus from mummies collected on soybean plants at Saint-Hyacinthe, Québec,
Canada (45.605◦ N, 72.916◦ W) on 13 September 2019. All insect life stages were maintained
at 25 ◦C, 50–60% RH, and an L16:D8 photoperiod. Adult males and females were kept in
boxes with soybean plants infested by soybean aphids. After aphid mummification and
emergence of adult parasitoids, we changed the plants with other plants infested by aphids.
Droplets of 10% glucose (honey) were placed on parafilm and hung inside the box as a food
source for the adults.

The pink-spotted lady beetle, Coleomegilla maculata (Coleoptera: Coccinellidae), is a
relatively polyphagous coccinellid species that is found throughout the Americas [51]. It
feeds on a variety of pests including chrysomelid and lepidopteran larvae and eggs, spider
mites, and aphids [52–54]. In this study, we established a colony of lady beetles collected
in a maize field at Saint-Simon, Québec, Canada (45.681◦ N, 72.858◦ W) on 20 September
2019. Colony was held in the same conditions as those of the aphid (60–70% RH, L16:D8
photoperiod, at 22 ◦C). Adults were kept in plastic boxes (24.43 cm length × 16.81 cm
width × 8.55 cm height) on cut paper and were fed immature and adult soybean aphids.
We brought 10% glucose water and pure water, each provided on a small piece of absorbent
cotton in a plastic tube and changed it out every three days. We also provided bee pollen to
supply as an additional protein source. Every three days, each food source was renewed.
Clusters of eggs, usually laid on the cut paper or on the inner surfaces of the boxes, were
collected twice weekly and transferred to 5.5 cm diameter petri dishes until hatching.
Larvae were then fed with aphids in Petri dishes to adult stage and transferred in the boxes.
After one generation, field-collected adults were removed.

Aphid, parasitoid, and predator voucher specimens were deposited in the Université
de Montréal Ouellet-Robert Entomological Collection with catalog numbers QMOR61.147-
QMOR61.152, QMOR57.627-57.628, and QMOR57.629-57.633, respectively.

2.2. Plant and Microbial Materials

Soybean seeds (cultivar ETNA) and commercial inoculants were supplied by Pre-
mier Tech (Rivière-du-Loup, QC, Canada). The mycorrhizal inoculant contains 500 spores
per gram of R. irregularis isolate DAOM197198. This isolate has been the most prevalent
commercially-available Arbuscular Mycorrhizal (AM) fungi for the last two decades [55].
The Rhizobial inoculant was a liquid solution containing B. japonicum PTB 162 at a concen-
tration of 7 × 109 colony-forming units per milliliter of inoculum.

2.3. Experimental Design

The experiment was conducted under controlled conditions in a walk-in growth
chamber. The experiment was set up in a randomized block design with four treatments
of microbial inoculant, namely, control without inoculation (M−R−), mycorrhizal inocu-
lant (M+R−), rhizobium inoculant (M−R+), and double inoculant with mycorrhizal and
rhizobial (M+R+) (Appendix A; Table A1). Nine and eight replicates per each inoculant
treatment, for the parasitoid and the ladybird beetle experiment, respectively, were per-
formed. Four inoculant treatments were added to sterile pots. AM fungus inoculation
consisted of 2 g of paper-wrapped commercial inoculum [6] roughly 5 cm below the soil
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surface [18], 1 cm below the germinated seeds. Inoculation with rhizobia was performed
with 40 µL of inoculum placed directly on the germinated seed.

Soybean seeds were germinated on agar medium for three days before sowing. Sow-
ing was carried out in 45–50 mL germinating cells with potting substrate PROMIX-PGX
(Premier Tech, Rivière-du-Loup, QC, Canada) containing vermiculite. Two weeks later, the
plants were transferred into 3 L pots (6.5′ ′ × 7′ ′) on potting soil BERGER BM6, a horticul-
tural coarse sphagnum peat mixture (80–90%) and perlite (Terris, Laval, QC, Canada) (see
Dabré et al., in revision) [41]. For the duration of the experiment, soybean plants were kept
in a growth chamber at 20 ◦C (light) and 18 ◦C (dark), L16:D8 photoperiod, and at 55–65%
relative humidity. Constant light was provided by 16 neon tubes of 160 W each. They were
fertilized with 50 mL of nutrient Long Ashton solution [56] one time per week and watered
twice a week with the same quantity of water.

Each plant enclosed in a box made of a transparent cylindrical rigid plastic 55–60 cm in
height and 25 cm diameter and closed at the top with a fine mesh net (30 cm in diameter).
Six weeks after transplanting, the plants had attained the third trifoliate stage, and we tested
a subset of roots to confirm the establishment of the microbial symbioses in inoculated
plants (Dabré et al., in revision) [41]. Four apterous adult aphids were placed on the top of
each plant of each treatment to give birth for 48 h. These adults were then removed, and the
number of first-instar, same-generation aphid nymphs was standardised at 5.

Two weeks later, 40 s to fourth-instar aphids [57] were randomly collected from each
plant of the four inoculants treatments following the same protocol described above and
introduced onto a fresh-cut soybean leaf in Petri dishes 10 cm in diameter (9 replicates
per each treatment). A mated female parasitoid wasp, 1–2 days old, was introduced
into each dish to oviposit on the aphids and removed 24 h later [58]. Petri dishes with
parasitized aphids on leaves were kept at 26 ◦C in the day and 24 ◦C in the night until
mummification [49]. Each mummy was removed and placed in a gelatin capsule and held
until emergence of parasitoid in the same conditions. Two visual inspections were made
each day, in the morning and evening.

The predator experiment was conducted two weeks after the introduction of aphids.
The experiment was carried out in 32 (8 replicates per each treatment) Petri dishes of 10 cm
diameter with moistened filter paper. In each Petri dish, a first instar larva was introduced
and fed, ad libitum, a mix of aphid life stages, until adult pupation. Two visual inspections
were made each day throughout the experiment.

2.4. Insects’ Parameters Measured

For parasitoids, the following fitness parameters were recorded: total number of mum-
mified aphids; time between mummification and adult emergence; number of emerged
female and male adults; length of the left hind tibia of each emerged parasitoid as a proxy
of total insect size [59].

For predators, we recorded the inter-molt duration of each instar and the pupa. At the
last instar, we measured the larval weight daily until pupation. Finally, we recorded the
emergence time of adults, i.e., the duration of the pupal stage.

2.5. Statistical Analysis

Statistical analyses were performed in R [60]. All the data were tested for normality of
distribution and homogeneity of variance by Shapiro–Wilk test and Levene’s test, respec-
tively. For parasitoids, to examine the effects of AM fungi and rhizobia inoculation, the
same number of aphids from each of the four inoculant treatments replicated nine times are
followed to evaluate variables as the number of mummies, the parasitoid’s survival, and the
hind tibia length of female and male parasitoids. We performed linear mixed effects model
(LMM) with the function lmer in package lme4 [61] and fitted the model with ANOVA.
The parasitoid variables, sex ratio and development time, did not meet the assumption of
normality and equality of variance using the Kruskal–Wallis test [26], followed by post hoc
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Dunn’s test [62] for multiple comparisons between inoculant treatments when significant
differences were observed.

To assess the influence of the inoculation on ladybird beetles, different parameters
such as larval stages, pupation duration, the fourth larval stage, and adult weight were
measured on the first larval stage fed with aphids from each of four inoculated plants
replicated eight times, as evaluation variables. We also performed the same model as above
(LMM) followed by ANOVA. For all the statistics where we performed LMM, inoculation
treatments were used as fixed factors (independent variables), and blocks as random
factors, and the different parameters measured on parasitoids and ladybird beetles as
dependant variables.

3. Results
3.1. Effects of Soybean Aphid Parasitoid, Aphelinus Certus of AM Fungi, and Rhizobia Inoculation
on Soybean

Parasitoid survival was different between inoculants. The rhizobium (M−R+) treat-
ment had the lowest proportion of emerged adult parasitoid, with all three other treatments
yielding equivalent or higher survival rates (Table 1). However, any significant difference
in aphid parasitism by A. certus between the inoculant treatments was observed concerning
the number of mummies and the adult wasp size, as measured by hind tibia length (Table 1).
In addition, no difference was observed between inoculant treatments in either the adult sex
ratio (females on males) or in the wasp development time of females and males (Table 2).

Table 1. Average of parasitoid wasp parameters measured as variables (mean ± SE, F, df = 3, p)
of 9 replicates per inoculant treatment (N = 9). Control: M−R−; Mycorrhizae+Rhizobium: M+R+;
Mycorrhizae: M+R−; Rhizobium: M−R+. Linear mixed effect model (LMM) follows by ANOVA.
Letters followed by mean ± SE represent Tukey’s honest significant difference (HSD) groupings.

Variables
Inoculant Treatments

F-Values p
M−R− M+R− M−R+ M+R+

Number of mummies 10.89 ± 3.46 7.89 ± 2.25 4.33 ± 2.00 4.33 ± 1.36 1.7470 0.1772
Proportion of emerged

parasitoids (%) 66.7 ± 11.54 b 78.3 ± 7.77
b

24.1 ± 8.79
a

70.4 ± 10.97
b 6.3826 0.0025

Tibia length-females (µm) 283 ± 9.01 281 ± 4.97 286 ± 9.07 269 ± 9.05 0.8247 0.2909
Tibia length-males (µm) 262 ± 11.50 261 ± 12.87 255 ± 14.52 253 ± 9.08 0.3990 0.9404

Table 2. Sex ratio and development time of parasitoid wasp tested as variables by applying Kruskal–
Wallis test (χ2, df = 3, p) to differentiate inoculant treatments grouping (N = 9). Control: M−R−;
Mycorrhizae+Rhizobium: M+R+; Mycorrhizae: M+R−; Rhizobium: M−R+. p > 0.05 (not significant).

Variables χ2 p

Sex ratio (F/M) 3.9429 0.2677
Development time of females (days) 5.6273 0.1370
Development time of males (days) 1.1173 0.7729

3.2. Effects of AM Fungi and Rhizobia Inoculation on Ladybird Beetle, Coleomegilla Maculata

There was no measurable effect of any inoculant on measured fitness parameters of
the ladybeetle (Table 3) in terms of duration of the larval stages, pupal stage, and total
pre-imaginal life, the weight of the fourth instar, or the weight of the adult emergence.
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Table 3. The average number of ladybeetles four larval stages and pupation duration, the weight
of the fourth larval and adult (mean ± SE, F, p values, N = 8) of 8 replicates per treatment. Control:
M−R−; Mycorrhizae+Rhizobium: M+R+; Mycorrhizae: M+R−; Rhizobium: M−R+. Linear mixed
effect model (LMM) follow by ANOVA was applied, and no measurable difference was observed
between the inoculant treatments following the means.

Variables
Inoculant Treatments

F p
M−R− M+R− M−R+ M+R+

L1 duration (days) 2.71 ± 0.16 2.74 ± 0.17 2.74 ± 0.17 2.87 ± 0.13 0.6406 0.4339
L2 duration (days) 2.64 ± 0.15 2.69 ± 0.13 2.78 ± 0.16 2.70 ± 0.16 0.2387 0.6340
L3 duration (days) 3.00 ± 0.00 2.89 ± 0.12 3.17 ± 0.16 3.23 ± 0.17 0.5515 0.4720
L4 duration (days) 5.31 ± 0.17 5.45 ± 0.18 4.83 ± 0.26 5.26 ± 0.47 0.4830 0.5131

Pupation (days) 6.29 ± 0.18 6.00 ± 0.00 6.29 ± 0.18 5.86 ± 0.14 0.3000 0.6004
L4 weight (g) 13.3 ± 0.25 13.6 ± 0.70 14.4 ± 0.57 14.1 ± 0.78 0.7340 0.4266

Adult weight (g) 11.0 ± 0.01 11.9 ± 0.24 12.2 ± 0.26 12.3 ± 0.45 1.8576 0.2285

4. Discussion

The only significant result was for the adult parasitoid survival in the rhizobium-
only (M−R+) inoculated treatment, where the survivorship of the pupal stage of A. certus
developing on soybean aphid increased by 42.6% to 54.2% relative to the control, myc-
orrhiza, and double inoculant (mycorrhiza and rhizobium) (Table 1); no effect on other
tested parameters were observed. The negative effect of rhizobium inoculation on adult
parasitoid emergence found in our experiment is similar to what was found by Pineda et al.
(2013) [28], who documented a decreased abundance of the parasitoid Diaeretiella rapae
(McIntosh) (Hymenoptera: Braconidae) on the aphid M. persicae feeding on Arabidopsis
thaliana (L.) (Brassicaceae) associated with the bacterium Pseudomonas fluorescens. Similar to
our results, neither these authors nor Pangesti et al. (2015) found any effect of the bacteria
on the development time or weight of the parasitoid [28,29].

Furthermore, they [28] showed that the blend of volatile compounds from rhizobacteria-
treated aphid-infested plants is modified and less attractive to the aphid parasitoid than that
of a control. In contrast, positive effects of rhizobia-induced volatile on other parasitoid taxa
have been documented [4]. For example, Pangesti et al. (2015) [29] documented an increased
attraction of the parasitoid Microplitis mediator (Haliday) (Hymenoptera: Braconidae) for the
caterpillar Mamestra brassicae (L.) (Lepidoptera: Noctuidae) on rhizobium-associated plants
(A. thaliana). After analysis of the volatile compounds, they found, in response to caterpillar
feeding, a suppression by the microbial symbiosis of the emission of compounds such as
(E)-α-bergamotene (a terpene), methyl salicylate, and lilial (aromatics) [29].

Our study also did not find any effect of AM fungus inoculation on the parasitic wasp
(Table 1). In the same line, Gange et al. (2003) [22] presented the first study focusing on
AM fungi–herbivore–parasitoid interaction and they found no effects with the parasitoid
Diglyphus isaea (Walker) (Hymenoptera: Eulophidae) attacking the leaf-miner Chromatomyia
syngenesiae Hardy (Diptera: Agromyzidae) on plants associated (Leucanthemum vulgare
Lam.) with AM fungus Funneliformis caledonium (syn. Glomus caledonium (T.H. Nicolson &
Gerd.) Trappe & Gerd. or Rhizophagus fasciculatus (syn. Glomus fasciculatum (Thaxt.) Gerd.
& Trappe)). Likewise, another study showed similar results with no effects of the AM
fungus Claroideoglomus etunicatum (syn. Glomus etunicatum W. N. Becker & Gerdemann) on
the parasitism of the silver leaf whitefly (Bemisia argentifolii Bellows & Perring) (Hemiptera:
Aleyrodidae) by the parasitoid Eretmocerus eremicus Rose & Zolnerowich) (Hymenoptera:
Aphelinidae) [25]. However, these authors found positive and negative effects of AM
fungus on the parasitism rate depending on AM fungi species, with concomitant changes
in leaf chemistry.

As mentioned above, as examples, Pineda et al. (2013) [28] showed a negative effect
of rhizobia on parasitoid, while Gange et al. (2003) [22] found that AM fungi inoculation
helped parasitoid. Then, in our study, the absence of effect with the double inoculation
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(M+R+) could be explained by the presence of AM fungus: perhaps the negative effects of
the rhizobium were mitigated by the presence of AM fungus in the double inoculation.

AM fungi and rhizobia inoculation did not influence any measured parameter of the
soybean aphid predator C. maculata (Table 3). Previous studies have shown a positive
response of predators feeding on prey on AM fungi-induced plants, specifically with an
increase of the predator’s population growth rate [20] or, similarly, the predator’s final
population abundance [6,21]. Meanwhile, effects induced by rhizobia can be transferred up
to the third trophic level: Katayama et al. (2011) documented an increase in the abundance
of an aphid predator, the ladybird beetle Coccinella septempunctata Linnaeus (Coleoptera:
Coccinellidae), on soybean plants inoculated with rhizobia [30].

A critical factor of aboveground tritrophic interactions is prey/host quality affecting
the fitness of predators and parasitoids [4]. Another mechanism that affects tritrophic
interactions is when beneficial organisms, such as AM fungi and rhizobia, alter the nutrient
and toxin concentrations of the tissues of herbivores [63]. In a trophic cascade system,
it has been shown that the upper levels have higher concentrations of N and P than do
lower, such as plant vs. herbivores and herbivores vs. natural enemies (predators and
parasitoids) [4,64]. Thus, an increase in these nutrients in the plant can indirectly enhance
predator and parasitoid fitness through that of herbivores [65]. In an AM fungi–plant
interaction study, the higher nutritive quality of the two-spotted spider mite Tetranychus
urticae Koch (Trombidiformes: Tetranychidae) improved the reproduction on its predator,
Phytoseiulus persimilis Athias-Henriot (Mesostigmata: Phytoseiidae) [20].

Dabré et al. in revision [42], studying the same study system, did not document
any effect of plant chemical composition (as affected by rhizosphere microbe inoculation)
on soybean aphid size, although they did record an increased population growth rate.
Similarly, Hempel et al. (2009) [24] showed that the inoculation of AM fungus on timothy
grass (Phleum pratense L.), albeit decreasing Rhopalosiphum padi (L.) (Hemiptera: Aphididae)
population growth, increased the rate of parasitism in aphids by the parasitic wasp Aphidius
rhopalosiphi (De Stefani Perez) (Hymenoptera: Braconidae), but with no clear effects of AM
fungus inoculation on the concentration of nitrogen and phosphorus in the aphid’s plant
host. They suggested that other cascading effects affect the second (herbivores) and third
(parasitoids) trophic levels more than does plant nutritional status alone [24]. In addition,
root mutualists may alter the quality of prey or host by impacting plant secondary chemicals
sequestered by herbivores to protect them against natural enemies [66]. Another possible
explanation concerns insect-associated microbes that can enhance resource acquisition or
provide protection against biotic or abiotic factors on their host [67]. Some facultative
endosymbiotic bacteria can protect aphids from parasitoids. For example, the secondary
symbiont Hamiltonella defensa Moran et al. (Gammaproteobacteria: Enterobacteriaceae) can
protect the pea aphid Acyrthosiphon pisum (Harris) (Hemiptera: Aphididae) from braconid
parasitoid wasps [68]. This defensive effect is variable, however: a study showed that two
Aphelinus species (A. atriplicis Kurdjumov and A. glycinis Hopper and Woolley) reacted
differently when parasitizing aphids infected with H. defensa [69]. Not having assessed
the nutritional and secondary chemicals, volatile compounds, and the associated-bacterial
endosymbionts of soybean aphid, we cannot at present make any conclusions regarding
the possible indirect role of microbial mutualists.

In conclusion, this study showed that the mutualistic interaction of soybean plants
with AM fungi and Rhizobia mostly failed to influence the third trophic level insects
such as parasitoids and predators. However, there was a negative response of parasitoids
with a decrease of parasitoid survival in the presence of rhizobium inoculant, presumably
due to the intrinsic quality of the herbivore prey. It has been shown that by affecting
plant nutritional status, root microbes belowground can indirectly affect predators and
parasitoids above ground. Another important factor that can influence the third trophic
level insects concerns the induction of the defense mechanisms of plant with the emission of
volatile organic compounds (VOCs). In this case, and to better understand the mechanisms
mediating microbe–plant–insect relationships, we suggest further study to explore the
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impact of root beneficial microorganisms on host insect body through changes in nutrients,
secondary chemistry, and impact of facultative endosymbionts associated.
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Appendix A

Table A1. Inoculant treatments used in the experiment.

Treatments

M−R− M−R+ M+R− M+R+

Control, neither mycorrhizal
nor rhizobial inoculant Rhizobial inoculant alone Mycorrhizal inoculant alone Mycorrhizal and Rhizobial

inoculant together

M: Mycorrhiza; R: Rhizobium; −: absence; +: presence.
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